メルトダウンしない小型原発はカナダが最初か
実は米国では核兵器をつくるためか、80年代に実験まで終わっていたのに、実用化はしなかった技術があり、それに日本の技術者も参加していたようで、もったいない話だ。
いまカナダが最初の実用化を鉛による冷却で始めようとしている。この試みの特色は、メルトダウンしないばかりか、2万Kwの超小型が可能なら、遠距離からの送電ロスが少減る。自分でできるものを、カナダに開発させて製造許可をとるのはなぜか。納得しにくいが、考えられる理由は日本に浸透している近隣国のスパイ網だろうか。 メルトダウンは防げたが、津波で壊れ、非常電源も地下で作動できなかった。
- 原発の怖さを叫ぶメディアは、スポンサーの化石燃料を強調したいなら理解はできる。だが原価が3倍もする燃料を売りたい産油国なら別だが、輸入国では冷却を2重3重にしておけばメルトダウンしなかった福島原発もありえたことも忘れるべきではないだろう。
- もう1つは、非常事態が起きた想定での訓練がされていなかったというNHK報道があった。今からでもせめて半年に1度くらいは定期停電にしてでも、非常部隊を準備し訓練をできるはず。やらなければ、いざという時に、体が動かず、またこれを東京の本社や素人の経営者、政治家の指揮で混乱させない必要があると感じる。
- 冷却ポンプがまわるように、小容量の電源をよそから送電するか、発電機を地震・津波の影響をうけない海抜と耐震基礎でまわせは、メルトダウンはなかったのだ。
べつな代替案のメルトダウンしない原子炉はテストされていた。
核分裂するのは中性子によるが、中性子の密度を下げると核分裂はへる。
これはウラニウム材料に10%ジルコニウムを混ぜると、この燃料はやわらかく破損しないし、熱伝導率が高くフルパワーでも800度Cをこえない。すると30年以上も無交換で燃料が使える。-
さらにアイダホの核暴走実験炉で800度を越すテストの結果、1000度をこすと金属に含まれる核分裂生成物が気泡になり燃料密度が急に下がり泡体になった。(略)』つまり、泡の含まれた液になれば、密度が下がり、核分裂しなくなる。
- ナトリウム冷却では200~800度までさらさらの液状で蒸発もなく、炉内圧力の上昇もない。また需要地に近くで発電すれば、高圧線の送電も不要になる。
その後の日本の専門家の検討で2万キロワット以下にできるという。その炉のサイズは炉心直径0.85mx高さ1.5mの超小型です。(これにつなげて水を蒸気にして発電機を回す装置がつく必要はありますが、、)
(平成25年9月7日「神の贈り物」服部禎男;元電力中央研究所理事) (16033(3)『非常識・夢・実現の進化を』をご参考)
カナダは鉛冷却式原子力発電を2025年に
Mar 8, 2017
LeadCold plans to use the large investment by Indian
conglomerate Essel Group to fund pre-licensing, detailed engineering design,
and development costs for a 3 MW demonstration reactor ahead of deployment on
remote sites, Janne Wallenius, CEO of LeadCold, told Nuclear Energy Insider in
an interview.
Related Articles
- Moltex
Energy sees UK, Canada SMR licensing as springboard to Asia
- Terrestrial
CEO: Plant costs of $40-$50/MWh set to displace fossil fuels
In late December LeadCold filed its fast neutron Swedish
Advanced Lead Reactor (SEALER) design with the Canadian Nuclear Safety
Commission (CNSC) for phase 1 of the pre-licensing review.
LeadCold aims to deploy its reactors within the remote
Arctic regions in the Northwest Territories and Nunavut, where power users are
off-grid and depend on high-cost diesel-fired generators.The company, a spin off from the Royal Institute of Technology in Stockholm (KTH), is developing a reactor that can provide a capacity of between 3 MW and 10 MW, to meet the different power needs of remote communities and mining customers.
The Levelized Cost of Energy (LCOE) is estimated at
C$450/MWh ($337/MWh) for 3 MW capacity and C$220/MWh for 10 MW, Wallenius told
Nuclear Energy Insider in an interview.
Electricity costs can be as high as C$2,000/MWh in the most
remote regions of Northern Canada, Roger Humphries, director of SMR Development
for Amec Foster Wheeler, said in an interview in January 2016.
Some 200,000 people live in over 200 remote communities and
80% of their power comes from diesel-fired generators.
カナダの地域別電力料金
Canada 2016 household power prices by
territorySource: Canada's National Electricity Board (NEB)
A 3 MW unit can provide 90% availability for a 30-year lifespan and clusters of around ten remote communities could be supplied with a single reactor unit, Wallenius said.
A 10 MW unit offers a ten-year lifespan at 90% availability
and could be deployed in pairs at mining projects where demand averages around
20 MW, Wallenius said.
More than 20 mining projects in Northwest Territories and
Nunavut have been identified as suitable for SEALER, offering a potential
annual market value of C$200 million based on the delivery of two units each
year, he said.
Design breakthrough
In January, LeadCold announced Essel Group Middle East would
inject US$200 million investment into the reactor program, in addition to US$18
million invested by the company in October 2016. Essel Group Middle East is a
subsidiary of Essel Group and operates a number of oil and gas and mining
projects.
LeadCold plans to use the funds to complete the
pre-licensing review
and detailed engineering design, and fund development costs for a licence to
build a 3 MW demonstration reactor in southern Canada by 2025.
The developer estimates it will cost C$200 million to bring
the SEALER to market and priced at C$100 million, Wallenius told Nuclear Energy
Insider.
The SEALER design uses 19.9% enriched uranium oxide fuel and
the reactor’s small core size allows it to achieve criticality in a fast
spectrum.
The successful development of aluminium alloyed steel
resistant to corrosion was key to commercializing the SEALER design, Wallenius
noted.
Lead has strong coolant properties but is also corrosive and
exposes parts of the reactor such as cladding tubes to high levels of
degradation. LeadCold collaborated with the Swedish steel industry and KHT to
create a protective layer of aluminium oxide and improve the steel resistance.
Tests showed the resulting proprietary alloy retained its
integrity for up to 10,000 hours in 550 degree-Celsius molten lead and this
improved the business case for the lead-cooled technology, Wallenius said.
The maximum temperature of the lead coolant is maintained
below 450 degrees Celsius, resulting in what the company sees as a manageable
corrosion of fuel cladding and structural materials over a life-span of several
decades.
The safety profile of lead-cooled reactors also makes the
design competitive against other types of very small advanced reactors,
Wallenius said.
The lead coolant in the SEALER design means the core can
manage a complete loss of off-site power for weeks before the integrity of the
fuel rods is challenged, according to the company. Further safety advantages of
using lead include the chemical retention of iodine and caesium in the event of
a failure, as well as inherent shielding of gamma radiation from fission
products.
Licensing race
Canada's strong market potential for small reactors has seen
a range of different advanced reactor designs submitted to the CNSC over the
past year.
In February 2016, Terrestrial
Energy became the first advanced reactor developer to submit its design—the
Integral Molten Salt Reactor (IMSR)--to the CNSC for pre-licensing review. Moltex
Energy opened pre-licensing discussions with CNSC in March 2016 for its
Stable Salt Reactor design, StarCore
Nuclear has submitted its high temperature gas reactor (HTGR) design and
most recently Urenco-led U-Battery consortium registered its helium gas-cooled
micro-modular reactor technology, World Nuclear News reported March 3.
Progress through the regulatory approval phase will prove
key to deciding which advanced reactor developer builds the first commercial
reactor in Canada.
LeadCold expects to complete the pre-licensing review for
the SEALER design in March 2018 and receive a construction licence by the end
of 2021, Wallenius said.
The developer aims to deliver its first
commercial plant in 2027, he said.By Karen Thomas
日本じゃこれだけ小さくても原発が~~~って 騒いでしまうだろうなあ。
返信削除